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We consider two types of fluctuations in the mass-action equilibrium in protein binding networks. The
first type is driven by slow changes in total concentrations of interacting proteins. The second type
(spontaneous) is caused by quickly decaying thermodynamic deviations away from equilibrium. We
investigate the effects of network connectivity on fluctuations by comparing them to scenarios in which
the interacting pair is isolated from the network and analytically derives bounds on fluctuations. Collective
effects are shown to sometimes lead to large amplification of spontaneous fluctuations. The strength of

both types of fluctuations is positively correlated with the complex connectivity and negatively correlated

with complex concentration. Our general findings are illustrated using a curated network of protein
interactions and multiprotein complexes in baker’s yeast, with empirical protein concentrations.
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The study of dynamical fluctuations in complex systems
has emerged as a topic of intense interest germane to the
fields of biology [1], financial systems [2], traffic in infor-
mation [3] and transportation [4] networks, and many
others. Of particular interest is the nature of collective
effects that arise as a consequence of the connectivity of
the underlying network. By examining such fluctuations,
we can understand when the underlying network plays an
important role and when, if possible, it may be ignored. A
good candidate arena to study dynamical fluctuations is
that of biomolecular processes taking place in cells.

Recently, propagation of biological fluctuations has
been studied in the context of genetic regulation [5] and
metabolic pathways [6]. These studies are primarily fo-
cused on small linear cascades of irreversible interactions.
Conversely, we study the related problem of fluctuations in
the mass-action equilibrium state of densely connected,
reversible protein-protein-interaction (PPI) networks.
These networks, in which proteins (nodes) are connected
by edges if they bind together, exhibit nontrivial topologi-
cal properties such as small-world effect, clustering, etc.
Ourselves and others have studied the effect of large sys-
tematic changes in the levels of just one or a few proteins
on the mass-action equilibrium of the entire PPI network
[7,8]. Such changes are likely to occur as a consequence of
regulated response of the cell, e.g., to changes in the
external environment. For the same system, however, there
is another type of perturbation that is both different and of
significant interest: intracellular noise or small fluctuations
in equilibrium (bound and free) concentrations of many
proteins. The randomness, smaller magnitude, and sheer
number of involved proteins characterize the difference
between fluctuations that are the subject of this study and
the systematic large changes in the total abundance of
single proteins that were the subject of Ref. [8]. These
fluctuations come in two varieties. Spontaneous fluctua-
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tions in equilibrium concentrations occur at constant pro-
tein copy numbers and are caused by the intrinsically
stochastic nature of binding interactions. These fluctua-
tions are small and change rapidly relative to the character-
istic time of changes in copy numbers of individual
proteins. They are well described using the machinery of
equilibrium statistical physics. In contrast, driven fluctua-
tions are induced by changes in proteins’ copy numbers
due to the stochastic nature of their production and degra-
dation as well as variation in activity of regulators. These
driven fluctuations are usually somewhat larger than the
spontaneous noise. They also change relatively slowly on
time scales (tens of minutes) that are large compared to
relaxation times of equilibrium concentrations which are
rarely slower than seconds.

To illustrate general principles with a concrete example,
in this study, we used a curated genome-wide network of
PPl in baker’s yeast (S. cerevisiae), which, according to the
BIOGRID database [9] were independently confirmed in at
least two published experiments. We combined this net-
work with a genome-wide data set of protein abundances
[10] and the set of curated multiprotein complexes from the
MIPS database [11]. After keeping only the interactions
between proteins with known concentrations, we were left
with 4085 interacting pairs and 81 multiprotein complexes
involving 2004 proteins. The same network was previously
used by us and others in [7,8]. Another assumption (justi-
fied in these earlier studies) is that in the absence of large-
scale experimental data on the strength of protein-protein
interactions, we use a set of evolutionary-motivated [8]
dissociation constants K;; = max(C;, C;)/20 for all inter-
actions in our network. The evolutionary-motivated asso-
ciation is defined to be the weakest association strength
necessary to keep a sizable fraction of the rate-limiting
protein in a given interacting pair bound in the dimer. The
denominator 20 is chosen to reproduce the average asso-
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ciation strength, (1/K;;) = 1/(5 nM), in a set of experi-
mentally measured dissociation constants from the PINT
database [12], which are assumed to be representative for
all biologically functional interactions among yeast pro-
teins. Occasional deviations from the evolutionary-
motivated scheme (e.g., due to specific functional require-
ments) would not undermine our final results since, as was
demonstrated in Ref. [8], equilibrium concentrations of
proteins and their complexes are not very sensitive to
assignment of dissociation constants to individual interac-
tions given their overall strength.

In what follows, we derive a general analytical frame-
work to quantify fluctuations in equilibrium concentrations
of two-protein complexes (dimers). To simplify the result-
ing formulae, we disclude homodimers as well as multi-
protein complexes though our formalism can be easily
modified to take them into account. We will also assume
reactions are occurring in a unit volume, in order to sup-
press the system volume V in the equations that follow. At
any point in time, the system is fully described by {C;}, the
number of copies of individual proteins, {Dj;} and {F}}, the
sets of integer numbers representing instantaneous abun-
dances of dimers and monomers correspondingly. These
three sets of variables are in fact not independent but
constrained by mass conservation.

To study spontaneous fluctuations, we consider the case
where all total copy numbers C; are held constant over time
and variations in free and dimer copy number are driven
solely by thermal fluctuations. To this end, we write the
free energy for a network of interacting dimers (see, e.g.,
[13] 3.16, for derivation and discussion):
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where €;; are dimer binding energies. The first sum runs
over all £ edges (dimers) and the second sum runs over all
nodes (proteins) in the network. Free (monomer) copy
numbers F; in this expression are not independent varia-
bles but rather a shorthand for C; — ¥, D7, derived from
mass conservation. The above expression does not include
volume-dependent entropy and kinetic terms that we have
suppressed as they are not relevant to our discussion here.
The requirement of zero first derivative of the free energy
with respect to dimer copy number gives the Law of Mass
Action (LMA) that relates equilibrium free (F; = (F}))
and bound (D;; = (D}’})) concentrations in the system via
D;; = F;F;/K;;, where K;; = K© exp(—€;;/kpT) is the
dissociation constant and the unstarred variables indicate
equilibrium concentrations. The second derivative of the
free energy with respect to dimer concentration yields the
generalized susceptibility and, in accordance with the
Fluctuation-Dissipation Theorem (FDT) [14], the relative
magnitude 7 of spontaneous fluctuations (5D12]-) =

<(D?j - Dij)2> as
(6D7)
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where as derived in [15], the matrix [is
r _D; G
(i) (km) kBT aDl]Dmk
= 0yDjj/Fi + 8;uD;j/Fj + 88 -

A direct consequence of this result is that spontaneous
fluctuations for a dimer linked to the rest of the network
involve contributions from other dimers, through nondiag-
onal elements of I' contributing to its inverse. To address
the impact of propagation of fluctuations over the network,
it seems natural to compare the noise of a dimer embedded
in the network to the noise for an isolated dimer (isol-F)
with the same equilibrium concentrations F;, F;, and D;;.
Such an isolated dimer corresponds to a matrix I' that is
diagonal so that its inverse is simply
, D.. D, -1
pisolF = [F(ij)(ij):rl = I:?llj + 7;] + 1] . 3)

Furthermore, 1 > 7" is easily shown from convexity

arguments [16]. Clearly then, collective effects act to am-
plify thermal fluctuations. This is related to propagation of
static perturbations, studied in [7], as fluctuations from
neighboring dimers contribute to a dimer’s own noise.
We define the amplification factor for a dimer (ij)

R = n/n""". “)

A cumulative histogram of amplification factors for the PPI
network of baker’s yeast is examined in Fig. 1. Relative to
the isolated case, collective effects can lead to thermal
noise that is significantly amplified, as is evident from
this histogram.

Collective amplification of thermal noise presents a
worrisome theoretical possibility. Can amplification occur
without limit? To address this question, it is fruitful to
develop an alternative formalism in which the magnitude
of fluctuations are calculated directly from the partition
function

z{c,)) {%}NS({Dij})exp( ZJ kBT) )

where the sum is taken over all possible (integer) copy
numbers of individual dimers defining the ‘“‘occupation
state” {D};}. Above the combinatorial factor, Ns({D;;})

counts the number of microstates of individual labeled
proteins resulting in a given occupation state {D:‘j} For

example, for an isolated dimer (ij), one has
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FIG. 1. Cumulative histogram of amplification factors for

spontaneous (thermal) noise of equilibrium dimer concentrations
D;; in the PPI network of yeast. Collective effects lead to
amplification relative to the isolated dimer null model.

In fact, the free energy expression of Eq. (1) can be derived
from Eq. (5) using Stirling’s approximation for factorials in
Ns({D};}). Using Eq. (5), it is straightforward to show, by a
change of variables, that higher moments of D;; can be
related to the lower moments evaluated at a reduced system
size. Indeed, in calculation of (Dj;), the combinatorial fac-
tor containing C;!C;!/Dj;! becomes C;!C;!/(D}; — 1)! =
C:C;(C; — DIC; — D/(D}; — 1)L, As a result, one has
the following exact equality:

zZ(C;—1,C;— 1)

D*, = C;(;
( l]>|CivC/' ! Z(C,, Cj)

(7

Here, for the sake of brevity, we omitted the concentrations
other than C; and C; as parameters of the statistical sum
Z({C;}). A similar expression for a higher moment

(DD}, = D) = C(C; = DCC; = 1)

ij
Z(C, C))

may be rewritten as
(Dy(D}; = 1)) =Diple.cDidle,-1.c,-1

where the latter moment is evaluated in a system for which
the copy number of proteins i and j (C; and C)) are reduced
by exactly one. It follows that apart from Eq. (2), the noise
may be alternatively expressed as

n =1+ (DiMc-1c,-1 = Dile,c, ®)

The above expression for thermal noise hints at an intimate
connection between the dynamic and static perturbations
of the mass-action equilibrium. This connection can be
made even more explicit by expanding the 2nd term to
first order in total concentration

7] = 1 - Dij[(A_l)ii + (A_l)/j + 2(A_1)1/:| (9)

where the matrix

et
dlogF,,

Agm = Dy + CiOpm
characterizes the response of equilibrium concentrations
F,, to small static changes in total concentrations Cj, [7]. It
should be remarked that, despite the approximation used in
Eq. (9), this approach is in good agreement with the FDT
formalism first introduced. One notes that this expression
for noise explicitly depends only on the total and dimer
concentrations used to define the matrix A. This suggests
the definition of a new isolated model (isol-C), consisting
of an isolated (ij) dimer formed by proteins with the same
C;, C;, and D;;. This is only possible through changes in
the dissociation constant and free concentrations of con-
stituent proteins i and j. It is important to mention that this
model is distinct from the isol-F benchmark defined ear-
lier, in which each isolated dimer has the same equilibrium
free and dimer concentrations (yet different C; and C;) as
the corresponding dimer in the network. For an isol-C
dimer, the matrix A is 2 X 2 and trivially invertible. The
noise is given by

T’isol—C — ( D

Dy . Dy
Ci - Dl] C] - Dl]

+ 1)_1. (10)

A comparison with Eq. (3) for the isol-F model reveals that
in the isol-C model, the protein i has an equilibrium free
concentration F; = C; — D;; = F; + YDy and similarly
for protein j. Thus, while the isol-F model completely
ignores the effect of neighboring dimers, the isol-C model
actually amplifies their contribution to fluctuations.
Indeed, in the isol-C model, the concentrations of these
dimers are effectively absorbed into the renormalized free
concentrations F;, F; and thus brought one step closer to
dimer (ij). Consequently, the noise of a dimer in the isol-C
model always exceeds the noise of a corresponding dimer
in the real network. The real noise for a dimer in a network
falls somewhere between the bounds of these two isolated
dimer scenarios. A summary of the lower- and upper-
bound models and their noise amplitudes is given in Fig. 2.

Now, we turn our attention to the second type of noise
driven by stochastic changes in protein copy number C;. In
the living cell, these fluctuations are typically larger than
the spontaneous fluctuations. Furthermore, the changes in
C; occur at a relatively slow time scale (tens of minutes) so
that the mass-action equilibrium quasistatically responds
to these changes. From the definition of A, it follows [7,8]
that an arbitrary number of small perturbations 6C,, add
up to

SF,
F;

= > (A1);8C,,. (11)

Because of bilinear dependence of D;; on F; and F;, one
also has

0Dy _ oF;  OF,

D; F, F;

(12)
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(a) isol-F model

FIG. 2 (color online). A comparison of the noise in a network
dimer to two isolated dimer models defined in the text. The real

noise is bound below and above by the isolated models 1" =
n= nisol-C .

Thus, in general, the amplitude of driven fluctuations is
given by

<5DL"21 _ D,»j<|:%(Al)ik8Ck + %(Al),’m5cm:|2>.

ij

(13)
The evaluation of the above expression requires the full
matrix of cross-correlations (6C;8C,,) which is currently
experimentally unknown. For the simplest case
(8C6C,,) = C% 0, of uncorrelated fluctuations (so-called
intrinsic noise [1]), the driven response becomes

(8D,
(5

) =Dy SIA D+ AP
ij int k

In conclusion, we study how the two types of noise
(spontaneous and driven) relate to simple properties of a
dimer such as its abundance and connectivity (number of
connections it has to the rest of network). With high
statistical significance, we find that the relative amplitude

(,/<6D%j>/ D;;) of both spontaneous and driven (intrinsic)
noise is negatively correlated with dimer abundance D;;
(Spearman coefficient of r = —0.98, r = —0.45, respec-

tively). While in the former case, a strong correlation is
expected from the law of large numbers, the significant

correlation in the latter case of driven noise is a nontrivial
result. Furthermore, we found that relative amplitude of
both spontaneous and driven (intrinsic) noise are positively
correlated with dimer connectivity (r = 0.42, r = 0.33).
These results are consistent with the overall scenario that
we investigated above in which any type of noise propa-
gates throughout the network and where the existence of
network connections (both direct and, to some extent,
indirect) to noisy partners positively contribute to fluctua-
tions of individual dimers. One should also note that the
above two types of correlations represent two independent
results since their signs are opposite to what one expects
based on a weak (r = 0.15) positive correlation between
dimer connectivity and its abundance.
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