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e examine how firms can create word-of-mouth peer influence and social contagion by designing viral

features into their products and marketing campaigns. To econometrically identify the effectiveness of
different viral features in creating social contagion, we designed and conducted a randomized field experiment
involving the 1.4 million friends of 9,687 experimental users on Facebook.com. We find that viral features
generate econometrically identifiable peer influence and social contagion effects. More surprisingly, we find that
passive-broadcast viral features generate a 246% increase in peer influence and social contagion, whereas adding
active-personalized viral features generate only an additional 98% increase. Although active-personalized viral
messages are more effective in encouraging adoption per message and are correlated with more user engagement
and sustained product use, passive-broadcast messaging is used more often, generating more total peer adoption
in the network. Our work provides a model for how randomized trials can identify peer influence in social
networks.
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1. Introduction

It is widely believed that social contagion and word-
of-mouth (WOM) “buzz” about products drive prod-
uct adoption and sales, and firms increasingly rely on
“network” and “viral” marketing strategies (Hill et al.
2006, Manchanda et al. 2008, Nam et al. 2010). Yet,
whereas most current work has focused on viral mar-
keting campaigns for existing products, less attention
has been paid to whether (and how) firms can design
products that are themselves more likely to go viral.
The effectiveness of such viral product design strategies
have yet to be examined or causally estimated. We
therefore conducted a large-scale randomized field
experiment to test the effectiveness of different viral
product design features in creating peer influence and
social contagion in new product diffusion.

Viral product design—the process of explicitly engi-
neering products so they are more likely to be shared
among peers—has existed at least since the first
chain letter was sent in 1888. Today, products regu-
larly use information technology (IT)-enabled features
like automated broadcast notifications and person-
alized invitations to spread product awareness. Yet,
although viral features have become more sophisti-
cated and a central part of the design of products

and marketing campaigns, there is almost no empir-
ical evidence on the effectiveness of such features in
generating social contagion and product adoption. We
therefore investigate two basic questions: Can firms
add viral features to products so they are more likely
to be shared among peers? If so, which viral features
are most effective in inducing WOM and peer-to-peer
influence in product adoption?

Unfortunately, evaluating the effects of viral prod-
uct design features is difficult because peer effects
and WOM are typically endogenous (Manski 1993;
Godes and Mayzlin 2004, 2009; Hartmann et al. 2008;
Aral et al. 2009; Aral 2011). We therefore designed
and conducted a randomized field experiment test-
ing the effectiveness of two of the most widely used
viral product features—active-personalized referrals
and passive-broadcast notifications—in creating peer
influence and social contagion among the 1.4 million
friends of 9,687 experimental users of Facebook.com.
The experiment uses a customized commercial
Facebook application to observe user behavior, com-
munications traffic, and the peer influence effects
of randomly enabled viral messaging features on
application diffusion and use in the local networks
of experimental and control population users. By
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enabling and disabling viral features among ran-
domly selected users, we were able to obtain rela-
tively unbiased causal estimates of the impact of viral
features on the adoption rates of peers in the local
networks of adopters. Using detailed clickstream data
on users’ online behaviors, we also explored whether
positive network externalities generated by additional
peer adopters inspired further product adoption and
sustained product use.

WOM is generally considered to be more effec-
tive at promoting product contagion when it is
personalized and active. Surprisingly, we find that
designing products with passive-broadcast viral mes-
saging capabilities generates a 246% increase in
local peer influence and social contagion, whereas
adding active-personalized viral messaging capa-
bilities generates only an additional 98% increase.
Although active-personalized messaging is more
effective in encouraging adoption per message and
is correlated with more user engagement and sus-
tained product use, it is used less often and there-
fore generates less total peer adoption in the network.
Overall, we find that viral product design features
generate econometrically identifiable peer influence
and social contagion effects and provide a model for
how randomized trials can identify peer influence in
networks.

2. Viral Product Design

Since the early work of Katz and Lazersfled (1955)
there has been great interest in how WOM drives con-
sumer demand, public opinion, and product diffusion
(Brown and Reingen 1987, Godes and Mayzlin 2004,
Aral et al. 2009) and how firms can create broad, sys-
tematic propagation of WOM through consumer pop-
ulations (Phelps et al. 2004, Mayzlin 2006, Dellarocas
2006, Godes and Mayzlin 2009). Many campaigns
target “influential” individuals who are likely to
propagate organic WOM most broadly (Katz and
Lazersfeld 1955, Watts and Dodds 2007, Goldenberg
et al. 2009), using referral programs to create incen-
tives for them to spread the word (Biyalogorsky
et al. 2001). Others use observational evidence on
viral campaigns to inform viral branching models of
WOM diffusion (Van der Lans et al. 2010). However,
to this point, studies of viral product design have
remained conspicuously absent from the literature on
viral marketing.

Viral product design involves incorporating specific
characteristics and features into a product’s design to
generate peer-to-peer influence that encourages adop-
tion. A product’s viral characteristics are fundamentally
about its content and the psychological effects content
can have on a user’s desire to share the product with
peers (Stephen and Berger 2009, Berger and Heath

2005, Heath et al. 2001). A product’s viral features, on
the other hand, concern how the product is shared—
how features enable and constrain a product’s use in
relation to other consumers. Viral features may enable
communication, generate automated notifications of
users’ activities, facilitate personalized invitations, or
enable hypertext embedding of the product on pub-
licly available websites and weblogs. Two of the most
widely used viral product features are personalized
referrals and automated broadcast notifications:

Personalized Referrals. Personalized referral features
allow users to select their friends or contacts from
a list and invite them to adopt the product or ser-
vice, with the option of attaching a personalized mes-
sage to the invitation. Social networking websites
enable users to “invite their friends” to join the service
through personalized referrals. When users send Web-
based e-mail messages, for example, from Gmail, an
automated, pop-up hyperlink enables them to invite
recipients to join the service.

Automated Broadcast Notifications. Automated broad-
cast notifications are passively triggered by normal
user activity. When a user engages the product in a
certain way (e.g., sends a message, updates his or
her status), those actions are broadcast as notifica-
tions to the user’s list of contacts. Notifications build
awareness among friends of new activities or prod-
ucts a user is adopting or engaging with, and can
encourage those friends to eventually adopt the prod-
uct themselves. For example, social networking web-
sites typically notify friends automatically when a
user adopts a new application or achieves some appli-
cation milestone.

Referrals are more personalized and targeted than
broadcast notifications. Users actively select a sub-
set of their social network to receive them (target-
ing) and can include personal messages in the referral
(personalization). WOM is generally considered more
effective at promoting product contagion when it is
personalized and active. When individuals choose
to share information about products and services
with their friends, they tend to activate their strong-
tie relationships (Frenzen and Nakamoto 1993, Aral
and Van Alstyne 2011). Strong ties exhibit greater
homophily (Jackson 2008), greater pressure for con-
formity (Coleman 1988), and deeper knowledge about
one another. We tend to trust information from close
“trusted” sources more and to respond more often
to them because of reciprocity (Emerson 1962). In
addition, the personalization of messages makes them
more effective, especially in online environments in
which we are bombarded with irrelevant information
(Tam and Ho 2005, Tucker 2010).

For these reasons, one might suspect that personal-
ized referrals are more effective than broadcast notifi-
cations. But, although each personalized referral may
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be more persuasive (more effective per message), the
pervasiveness of automated broadcast messages that
do not require additional time and energy on the part
of the user may lead to greater overall peer adop-
tion. The effort required by the user to actively select
and invite peers to adopt the product may curtail
widespread use of the personalized referral and so
limit its effectiveness in encouraging broad adoption.
The relative overall effectiveness of these viral fea-
tures is therefore ultimately an empirical question.

3. Experimental Design and

Procedures

Evaluating the effects of viral product design fea-
tures on social contagion is difficult because peer
effects and WOM are typically endogenous (Manski
1993, Hartmann et al. 2008, Van den Bulte and Lilien
2001, Godes and Mayzlin 2004, Van den Bulte and
Iyengar 2011). Several approaches for identifying peer
effects have been proposed, including peer effects
models and extended spatial autoregressive mod-
els (e.g., Oestreicher-Singer and Sundararajan 2008,
Trusov et al. 2009, Bramoulle et al. 2009), actor-
oriented models (e.g., Snijders et al. 2006), instrumen-
tal variable methods based on natural experiments
(e.g., Sacredote 2001, Tucker 2008), dynamic matched
sample estimation (Aral et al. 2009), structural models
(e.g., Ghose and Han 2010), and ad hoc approaches
(Christakis and Fowler 2007). However, randomized
trials are considered to be one of the most effec-
tive ways to obtain unbiased estimates of causal peer
effects (Duflo et al. 2008, Hartmann et al. 2008).

We therefore partnered with a firm that develops
commercial applications hosted on the popular social
networking website Facebook.com and collected
experimental data on the peer influence effects of
enabling viral features on the diffusion one of their
applications. This application is free to adopt and pro-
vides users the opportunity to share information and
opinions about movies, actors, directors, and the film
industry in general. We designed multiple experimen-
tal versions of the application in which personalized
invitations and broadcast notifications were enabled or
disabled, and randomly assigned adopting users to
various experimental and control conditions. As users
adopted the application, each was randomly assigned
to one of the two treatment conditions or the baseline
control condition. The application collected personal
attributes and preferences from users’ Facebook pro-
files, as well as data on their social networks and the
personal attributes and preferences of their network
neighbors.!

! Facebook allows users to specify privacy settings that may restrict
an application’s access to some or part of their profile. This is

The experiment enabled experimental group users
to use passive-broadcast and active-personalized viral
messaging capabilities to exchange messages with
their network neighbors, while disabling those fea-
tures for the baseline control group. The application
then recorded data on the use of these viral fea-
tures by experimental group users, as well as click-
stream data on recipient responses to viral messages
and their subsequent adoption and use of the appli-
cation. When an individual adopted the application
as a result of peer influence, their treatment sta-
tus was also randomized to ensure that the stable
unit treatment value assumption held. This facilitated
analysis of the relative effectiveness of different viral
messaging channels in generating peer adoption and
network propagation. Randomization also enabled
exploration of the mechanisms by which a particular
viral channel influenced recipient behavior. Two pri-
mary viral features were examined:

Automated Broadcast Notifications (Notifications).
When enabled, notifications were generated automat-
ically when an application user performed certain
actions within the application, such as declaring a
favorite movie or writing a movie review. When
notifications were generated, they were distributed
to a random subset of an application user’s peers
and displayed in a status bar at the bottom of the
peers’ Facebook environment. When a peer clicked
on the notification, they were taken to an application
canvas page where they were given the option to
install the application. These notifications required no
effort beyond normal application use, making their
engagement relatively costless to the user. Because
they were randomly distributed to a Facebook user’s
peers and were not accompanied by a personalized
message, they also exhibited low personalization.

Personalized Referrals or Invitations (Invites). When
enabled, invites allowed application users to send
their Facebook peers personalized invitations to
install the application. Peers received the invitation in
their Facebook inbox and could click on a referral link
contained within the invitation. If they did so, they
were taken to the application canvas page where they
were given the opportunity to install the application.
Each invite required a conscious and deliberate action
from the user beyond typical application use, requir-
ing more effort (activity) than notifications. Because
invites were targeted to specific peers and allowed the
inclusion of a personalized message, they also exhib-
ited greater personalization.

unlikely to have a significant effect on the study, because it is esti-
mated that less than 2% of Facebook users alter default privacy
settings (Gross et al. 2005).
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Table 1 Stratification Across Treatment Groups Figure 1 Graphical Representation of the Experimental Comparison
Baseline Passive-broadcast Active-personalized Baseline Passive-broadcast ! Active-personalized
control (%) treatment (%) treatment (%) group group group
5 475 475 ° o ® ° ® °
® [ 2
Y o ®
The experimental design consisted of three treat- /7\

ment groups into which users were randomly m m m
assigned: baseline, passive-broadcast, and active-person- ! ) { } { '}
alized. Users assigned to the baseline treatment group ‘\—/ U '\‘/
received a version of the application in which both Friends of Friends of  Friends of

. R [ N . baseline passive-broadcast active-personalized
notifications and invites were disabled. In the passive- group group group

broadcast treatment group (passive), only notifica-
tions were enabled. In the active-personalized treat-
ment group (active), both notifications and invites
were enabled. There were no other differences
between baseline, passive, and active applications.
Throughout the experiment, each adopter of the
application was randomly assigned to a treatment
group according to the proportions displayed in
Table 1. The proportion of users assigned to the
baseline was chosen in agreement with the applica-
tion developer to obtain a population size sufficient
to establish a comparative baseline, while limiting
potential adverse effects on the overall diffusion of
the product.?

Detailed logs of application user activity, adoption
times, viral feature use, peer response, and applica-
tion user and peer profile data were recorded, as were
social network relationships for application adopters
and mutual ties between peers of application users.
Our experimental design allowed us to measure the
effect of each of the viral features on the adoption
response of peers, as displayed in Figure 1. We also
measured adopters’ use by recording activity logs
that detailed each time a user took an action on the
application.

3.1. Recruitment

At the launch of the experiment, we designed an
advertising campaign in collaboration with a second
Facebook advertising firm to recruit a representative
population of Facebook users. Advertisements were
displayed to users through advertising space within
Facebook and within existing Facebook applications.
The campaign was conducted in three waves through-
out the duration of the experiment and cost a total
of $6,000 to recruit 9,687 usable experimental subjects,

2 The developer feared too many baseline users could stunt the viral
diffusion of the application and therefore insisted that the number
of baseline users be limited. Limiting baseline users should not bias
results as the proportion of baseline users to either treatment group
is constant across treatments and should only make our estimates
more conservative in that analyses comparing a treatment group to
the baseline group will have less power.

or 62¢ per recruit. The number of impressions, clicks,
and installation responses are displayed in Table 2.
Summary statistics of the recruited study population
are described in §4. Comparisons to published demo-
graphic statistics indicate the sample is indeed repre-
sentative of typical Facebook users (see the appendix).
The application was also publically listed in Face-
book’s Application Directory and so was available to
anyone on Facebook.

4. Empirical Methods

4.1. Data and Descriptive Statistics
The experiment was conducted over a 44-day period,
during which 9,687 initial users adopted the applica-
tion, with 405 users randomly assigned to the baseline
control group, 4,600 users randomly assigned to the
passive-broadcast treatment group, and 4,682 users
randomly assigned to the active-personalized treat-
ment group. Users in these groups collectively had
1.4 million distinct peers in their local social networks
and sent a total of 70,140 viral messages to their
peers, resulting in 992 peer adoptions—682 of which
were in direct response to viral messages. Three main
observations arise from consideration of the summary
statistics of the resultant data displayed in Table 3.
First, assignment to control and treatment groups
was clearly random, with no significant mean or dis-
tributional differences between users in terms of their
age, gender, network degree (number of Facebook
friends), and level of Facebook activity (number of

Table 2 Recruitment Statistics Describing the Initial Advertising
Campaign
Advertising
Wave Impressions Clicks related installs Installs
1 (Day 0) 18,264,600 12,334 3,072 3,714
2 (Day 15) 20,912,880 25,709 2,619 3,474
3 (Day 20) 19,957,640 7,624 3,219 4,039
Total 59,135,120 45,667 8,910 11,227
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Table 3 Summary Statistics and Mean Comparisons of Active, Passive, and Baseline Users
1 2 3 4 5 6
Baseline Passive Active t-statistic t-statistic t-statistic
(N =405) (N =4,600) (N=4,682) (B-P) (B-A) (P-A)
Mean Mean Mean t-statistic t-statistic t-statistic
(SD) (SD) (SD) (SE) (SE) (SE)
Age 31.51 30.81 29.94 0.46 1.03 1.45
(13.80) (13.31) (13.27) (13.35) (13.31) (13.24)
Gender (1 = male) 0.25 0.33 0.32 -1.57 —1.42 0.40
(0.44) (0.47) (0.47) (0.47) (0.46) (0.47)
Degree® 171.79 170.25 166.97 0.09 0.32 0.55
(223.88) (278.64) (248.77) (275.13) (247.15) (263.82)
Number of Facebook wall posts 40.52 36.45 37.07 0.46 0.15 —0.09
(79.89) (94.16) (246.76) (93.11) (238.20) (188.31)
Number of adopters in user’s local network 0.01 0.07 0.10 —2.84+ —3.60% —3.64*
(0.12) (0.35) (0.44) (0.34) (0.43) (0.40)
Percentage of adopters in user’s local network 0.02 0.09 0.15 -1.92¢ —2.35% —2.83
(0.002) (0.01) (0.01) (0.01) (0.01) (0.01)
Maximum diffusion depth 0.01 0.04 0.05 —2.53* —3.01% —1.98%
(0.11) (0.22) (0.24) (0.21) (0.24) (0.23)
Time to 1st adopter 9.40 477 3.17 1.27 2.04% 2.45%
(9.71) (8.04) (6.72) (8.07) (6.77) (7.30)
Time to 2nd adopter — 5.23 4.43 — — 0.58
(8.17) (6.97) (7.45)
Time to 3rd adopter — 5.29 3.04 — — 1.08
(8.07) (5.25) (6.33)
Time to 4th adopter — 6 117 — — 2.84x
(5.83) (1.12) (3.58)
Application use 3.17 417 4.56 —2.54 —2.89 —2.20*
(4.59) (7.24) (8.98) (7.08) (8.73) (8.16)

Notes. This table reports means and standard deviations for demographic variables, peer adoption statistics, and Facebook and application activity statistics of
baseline (column 1), passive (column 2), and active (column 3) control and treatment group users, as well as results of {-tests of mean differences between
baseline and passive users (column 4), baseline and active users (column 5) and passive and active users (column 6). Variables reported include Age: self-
reported age on Facebook; Gender (1 = male): self-reported gender on Facebook; Degree: number of Facebook friends; Number of Facebook wall posts: count
of the number of “wall posts” posted to an individual’s Facebook profile recorded at the beginning of the study; Percentage of adopters in user’s local network:
the percentage of an individual’s Facebook friends who adopted the application calculated at the end of the observation period; Time to 1st, 2nd, 3rd, 4th
adopters: the time in days to the first, second, third, and fourth adopters in the user’s friend network; Application use: a continuous measure of application
calls from a user’s account to the application server indicating the number of actions taken on the application.

2Kolmogorov-Smirnov tests of degree distribution differences: baseline-passive, 0.04, p = 0.80, not significant (NS); baseline-active, 0.04, p = 0.79, NS;
passive-active, 0.01, p =0.94, NS.

*p <0.01; **p < 0.05; **p < 0.001.

Facebook wall posts), confirming the integrity of the
randomization procedure.

Second, whereas their demographics and Facebook
activity patterns were the same, measures of peer
response in the network neighborhoods of treated
users differed significantly across the treatment and
control populations. T-tests show that the number
and percentage of peer adopters in a user’s local net-
work are significantly higher for treated populations
than for the baseline population. The number of peer
adopters in a user’s local network is approximately
7 times greater for users in the passive-broadcast
treatment group and 10 times greater for users in
the active-personalized group. Similarly, compared to
the baseline group, the percentage of adopters in a
user’s local network is approximately 450% higher for

users in the passive-broadcast group and 750% higher
for users in the active-personalized group. Measures
of the speed of adoption in a treated user’s local
network, as indicated by the time to the first, sec-
ond, third, and fourth adoption events, reveal that the
treatments increased the rate of adoption in a treated
user’s local network. The time to the first peer adop-
tion is approximately 200% shorter for users in the
passive-broadcast treatment group and approximately
300% shorter for users in the active-personalized
group. The extent to which the treatment leads to
adoption beyond a user’s immediate local network
can be measured by the maximal diffusion depth—
the maximum network distance from a treated user to
any peer adopter in a linked chain of adoptions. The
average maximal diffusion depth is approximately
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360% greater for the passive-broadcast treatment
group and 450% greater for the active-personalized
treatment group compared to baseline users. T-tests
reveal these differences are highly significant.

Finally, the extent to which each treatment leads
to increased application use is measured by users’
average application activity. Average application
activity is approximately 130% higher in the passive-
broadcast treatment group and 140% higher in the
active-personalized treatment group. We go beyond
these initial statistics and explore more formal mod-
els of peer influence and social contagion in the next
several sections.

4.2. Model Specification

Our main statistical approach uses hazard modeling,
which is the standard technique for assessing con-
tagion in economics, marketing, and sociology (e.g.,
Van den Bulte and Lilien 2001, Iyengar et al. 2011,
Nam et al. 2010). This approach typically represents
the hazard of adoption for individual i at time ¢t
as a function of individual characteristics and social
influence:

At x, w,y) = f(xi(t)% B Z wij]/j(t)> ,
j

where A(t) represents the baseline hazard of adoption,
x;(t) is a vector of variables unrelated to social influ-
ence that affect i’s adoption decision, w;; is the social
exposure of i to peer j, y;(t) is the adoption status of
peer j at time f, and y and $ are parameters to be
estimated.

Our circumstances, however, required a slightly dif-
ferent approach. We are interested in estimating the
treatment effects of randomly assigned viral features
on the adoption of peers of experimental and control
users, rather than the effects of users’ social environ-
ments on their own adoption decisions. Controlling
users’ entire social environments is typically too com-
plex and costly to be accomplished reliably in the
field. We therefore adopted an “inside-out” strategy
that estimated the peer effects of the treatment “out-
ward” from an individual to their peers, rather than
estimating the effects of an individual’s social envi-
ronment “inward” on their own adoption hazard (see
the appendix).

Our approach compares the hazards of adoption
in the social environments of users treated with pas-
sive and active viral applications to the hazards of
adoption in the social environments of users treated
with the baseline application. The analysis therefore
involves multiple failure time data in which multiple
peer adoptions can occur for the same user over time.
Failure times are correlated within users’ local net-
works, violating the assumption of independence of
failure times required in traditional survival analysis.

Network effects may also make contagion a function
of prior adoptions in a local network. We there-
fore employed a variance-corrected stratified propor-
tional hazards approach that accounts for the lack of
independence among the multiple clustered failure
times in the data and allows the baseline hazards to
vary by adoption event to account for the possibility
that adoption hazards vary across stages of a diffu-
sion process. We estimated the following model:

A, Xi) = Agi (1) e™P,

in which stratification occurs over the K adoption
events, Ay (f) represents the baseline hazard of the
kth adoption event (i’s kth friend adopting), X;; rep-
resents a vector of covariates affecting the adoption
of i’s neighbors (including i’s viral treatment status
(active, passive, or baseline), a measure of i’s level
of activity on the application (application activity),
peer notifications sent (notifications), and invites sent
(invites)), and B is a vector of unknown parame-
ters to be estimated. If ¢; is the adoption time for
the kth adoption in i’s network, adoption times are
sequential such that t; > t;_ ;. Adoption data are
time stamped in minutes and seconds, ensuring no
two events happen at the same time. The conditional
risk set at time f for event k therefore consists of
all subjects under observation at time ¢ who have
experienced a k — 1 adoption event. We estimated S
using standard maximum likelihood estimation and
adjusted the covariance matrix to account for non-
independence across individuals i using the follow-
ing robust covariance matrix (where G is a matrix of
group efficient residuals):

V=I"'GGI "

4.3. Robustness

We conducted numerous additional analyses to
ensure that our results are robust to selection bias,
contamination, information leakage, and multiple
alternative specifications of the contagion model.
First, selection bias could occur when a user chooses
to adopt the experimental application through the
recruitment campaign or when they adopt in response
to a viral message. We took steps to measure and miti-
gate both possibilities. The recruitment campaign was
designed to reach a representative audience of Face-
book users. The demographics of our study popula-
tion are comparable to those of the broader Facebook
population, and published Facebook demographics
fall within one standard deviation of study popu-
lation sample means. In addition, application users
that adopt because of peer influence may themselves
be subject to selection effects and may therefore be
fundamentally different than application users that
adopted via initial recruitment. We eliminate these
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sources of selection bias by only considering initially
recruited users in the randomized treatment group to
which they were assigned.

Second, in randomized trials in network environ-
ments, users assigned to different treatment groups
may not strictly be isolated from one another. This
raises the concern that information leakage through
indirect network pathways may contaminate the
results of the study. It is important to note that in
traditional studies, whether or not the network is
observed, relationships that create leakage effects may
still exist between treatment and control populations.
One benefit of our design is that we systematically
observe how individuals in the study are connected,
enabling us to measure and prevent leakage. Even
when making conservative assumptions about the
decay of information flow and quality over network
distance, we estimate potential leakage effects to be
small.> However, to ensure robustness, we controlled
for leakage by (a) evaluating peer adoption only in the
local networks of recruited users and (b) right censor-
ing peers when they gained more than one adopter
friend.

Finally, we tested several different functional forms
and specifications of the contagion model. Detailed
evidence showing the robustness of our results to
selection bias, contamination, leakage, and alternative
model specifications are provided in the appendix.

5. Results

5.1. Effects of Viral Product Design on Peer
Influence and Social Contagion

Table 4, Model 1, displays the average treatment
effects of passive-broadcast and active-personalized
viral treatments on peer influence and social conta-
gion in the local networks of treated users above and
beyond control group users who received the base-
line application. Users of the passive-broadcast appli-
cation experienced a 246% increase in the rate of
application adoption by peers compared to the base-
line group, whereas adding active-personalized viral
messaging capabilities generated only an additional
98% increase (active-personalized users experienced a
344% increase over the baseline group). Models 2—4
decompose the variance in local network adoption
rates explained by these treatments by estimating
how intermediate variables such as overall appli-
cation activity, notifications, and invites explain the
resultant increases in peer adoption. Model 3 shows
that a significant amount of the treatment effects are
explained by correlated increases in users’ use of the
application and the viral messages their use gener-
ates. Users assigned to passive-broadcast and active-
personalized applications use their applications more

3 Results of these analyses are available from the authors.

7
Table 4 Variance-Corrected Stratified Proportional Hazards of
Contagion in Networks of Baseline, Passive, and
Active Treatment Groups
1 2 3 4
Hazard Hazard Hazard Hazard
ratio ratio ratio ratio
(SE) (SE) (SE) (SE)
Viral state = passive 3.46" 3.35% 2.50% 2.51%
(1.18) (1.15) (0.86) (0.86)
Viral state = active 4,44+~ 429 3.33% 3.31%
(1.64) (1.56) (1.24) (1.24)
Application use 1.02% 1.02%* 1.02+
(0.004) (0.003) (0.003)
Notifications 1.02++ 1.02#
(0.002) (0.002)
Invites 1.06*
(0.028)
Log likelihood —4,694.359 —4,631.795 —4,544.845 —4,542.577
X2 (df) 19,34 5741+  298.78=  307.47*
(2) (&) (4) (5)
Observations 3,929 3,929 3,929 3,929

Notes. This table reports parameter estimates and standard errors from the
variance-corrected stratified proportional hazards model specified in §4.2
with robust standard errors clustered around users’ local network neighbor-
hoods. Variables reported include Viral state = passive (a dummy variable
denoting passive viral application users), Viral state = active (a dummy vari-
able denoting active viral application users), Application use (a continuous
measure of application calls from a user’s account to the application server
indicating the number of actions taken on the application), Notifications (inte-
ger count of the number of notifications sent), /nvites (integer count of the
number of invites sent).
*p < 0.05; **p < 0.001.

and send more messages (invites and notifications)
that generate greater peer adoption in their local net-
works. Model 4 reveals that invites have a greater
marginal impact on the adoption rate of peers than
notifications. One additional personal invite increases
the rate of peer adoption by 6%, whereas one addi-
tional notification increases the rate of peer adoption
by only 2% on average, confirming that more person-
alized active features have a greater marginal impact
on the rate of peer adoption per message than passive
broadcast features.

The clickstream data, which record each time-
stamped viral message and any response to it by peers,
corroborate these results. Table 5 displays the num-
ber of invitations and notifications sent, the responses
to those messages that resulted in click-through

Table 5 Clickstream Analysis of Responses to Viral Messages and
Adoption
1 2 3
Messages Adoptions via click Adoption rate
sent through installation (marginal impact)
Invitations 160 16 0.10
Notifications 69,980 666 0.01
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installations of the application, and the resultant
adoption rate per message. Invitations are the least
used feature, but the most effective per message in
creating peer influence and social contagion. Notifica-
tions, which require the least effort and are sent auto-
matically to randomly selected peers, generate more
messages, but are less effective per message in con-
verting new users.

These results together confirm the main findings of
the study: viral product design features do in fact gen-
erate econometrically identifiable peer influence and
social contagion effects. Features that require more
activity on the part of the user and are more person-
alized to recipients create greater marginal increases
in the likelihood of adoption per message, but also
generate fewer messages, resulting in less total peer
adoption in the network.

Figure 2, (a) and (b), plots the cumulative peer
adoptions and the fractions of adopters, respectively,
in the local networks of baseline, passive, and active

treatment users. To assess the effect of the treatment
on the adoption of application users” peers through
any influence-mediating channel, in this figure we
identify the time of susceptibility to influence for all
peers of initial adopters. To account for fixed-time
effects, we look at the adoption response of all sus-
ceptible peers t days after they first became suscepti-
ble. Figure 2(d) plots the Kaplan-Meier survival esti-
mates for baseline, passive, and active treatments.
Susceptible peers of users in the passive-broadcast
viral treatment group had an approximately seven-
fold higher fraction of adopters in their local networks
compared to baseline users. Susceptible peers of users
in the active-personalized treatment group had over
a 10-fold increase in adoption fraction compared to
users in the baseline group, and an additional 1.5-fold
increase in adoption fraction over peers of users in the
passive viral treatment group. These graphs confirm
that viral feature design has an economically signifi-
cant impact on the diffusion of product adoption.

Figure 2 Plots of (a) the Cumulative Number of Peer Adoptions, (b) the Fraction of Susceptible Peer Adopters, (c) the Average Activity, and
(d) the Kaplan-Meier Survival Estimates Over Time for Baseline, Active, and Passive Users
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5.2. Mechanisms Driving Social Contagion
Several social mechanisms could explain how viral
features create product contagion. An unexpected
result from the experiment enabled us to investi-
gate these mechanisms. Interestingly, treated users not
only had more peer adopters, but also used the appli-
cation more than control group users (see Figure 2(c)).
As Figure 2(c) shows, active-personalized users used
the application more than passive-broadcast users,
who in turn used the application more than base-
line users. This result is surprising because users
were randomly assigned to different applications,
and the versions were identical from users’ points
of view apart from the invitation option included
in the active-personalized application. Understanding
why use differed across treatment groups (despite
randomization) provides insight into how viral fea-
tures create contagion and sustained product use.

Viral feature inclusion, application use, and peer
adoption are correlated, as shown in Table 8, Model 1,
and Figure 2, (a) and (c). The randomized trial con-
firms that viral features cause peer adoption. We also
know that because features are randomized and not
controlled by the user, no other covariate can drive
the existence of features. Given these constraints,
we depict the remaining possible causal relationships
between feature inclusion, application use, and peer
adoption in Figure 3 and evaluate the possible expla-
nations for these relationships.

Cases (a) and (b) in Figure 3 cannot explain the
observed correlation between viral feature inclusion
and peer adoption. Specifically, they are inconsistent
with the discrepancy in application use between users
in different treatment groups (Figure 2(c) and Table 7).

Cases (c¢) and (d) in Figure 3 represent a net-
work externalities mechanism (Van den Bulte and
Stremersch 2004) in which peer adoption drives
increased application use by the original adopter.
The number of peer adopters a user has is posi-
tively associated with their own sustained use of the
application even after controlling for their treatment
status, degree, and overall Facebook activity (Table 7,
Model 3). In addition, users of active-personalized
and passive-broadcast applications exhibit more use
(Table 7, Model 1), again controlling for observ-
able differences in users’ overall Facebook activ-
ity (Table 7, Model 2). These results are consistent
with the existence of positive network externalities—
as more of their peers adopted the application,
users were more engaged and used the applica-
tion more.! Although passive-broadcast features are

* Network externalities can take many forms, some of which are
mediated by viral features that increase awareness of the applica-
tion. Contact the authors for more details and analysis of different
types of network externalities in this setting.

associated with more product use than the base-
line early on, this association disappears over time
(see Figure 2(c)). That active-personalized features
are associated with sustained product use over time
and passive-broadcast features are not may suggest
a direct network effect from interacting with spe-
cific peers—those that are personally invited to the
application by their friend. Whether these effects are
stronger with invited peers or not, the network effects
explanation is broadly supported by the evidence and
seems plausible.

However, there could be alternative explanations of
these results: (1) that users derive utility from use of
the viral features, (2) that users derive utility from
the mere existence of the viral features, (3) that users
are more satisfied when they receive the viral fea-
tures they expected, and (4) that other omitted vari-
ables create a spurious correlation between peer adop-
tion and use. We evaluated each of these explanations
in turn.

First, cases (e) and (f) in Figure 3 represent a
demand effect explanation in which the correlation
between features and application use is explained
by an increased utility from the viral features. In
one variant of the demand effects explanation, use
of the features themselves make the application
more interesting and therefore simultaneously drives
application use and peer adoption, creating a spuri-
ous correlation between the two. If use of the invite
and notification features was correlated with both
application use and peer adoption, and if peer adop-
tion itself was not driving use, the correlation between
the number of peer adopters and application use
should disappear once we control for the use of
invites and notifications. However, when we hold
constant application use associated with both notifi-
cations and invites, there is still a strong positive rela-
tionship between the number of peer adopters and
application use (Table 7, Model 3). This suggests that
viral feature use does not fully explain the correlation
between peer adoption and use.

Second, it could still be that the mere existence of
features rather than their use increases users’ utility.
But, the data do not support this explanation either.
When the viral states are entered into the regres-
sion they significantly predict application activity in
the expected directions and magnitudes (Table 7,
Model 1). When the number of peer adopters is
controlled, those relationships disappear completely
(Table 7, Models 3 and 4), indicating that the viral
state of the application alone—or the utility from sim-
ply being able to notify or invite friends—does not
explain application use.

Third, it could be that users are more satis-
fied when they receive the viral features that they
expected, creating a demand effect from the expected
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Figure 3

Possible Causal Relationships Between the Existence of Application Features, Peer Adoption, and Application Use

(a)  Adoption

(b) Adoption

(c) Adoption

(d) Adoption

Feature Use | Feature Use Feature Use Feature Use
©  rdoption @ Adoption (@ Adoption ) Adoption
Feature Use Feature Use Feature Use Feature Use

Note. Arrows indicate causal direction.

utility of having viral features enabled. We per-
formed an additional analysis to address this alter-
native explanation. Application use by peer adopters
is a reasonable proxy for their satisfaction with
the product—the extent to which their expecta-
tions regarding the product conform to the product
they actually received upon adoption. We therefore
examined the application use of peers that adopted
through response to a viral message and divided
them into two groups: those that received (through
random assignment) a version of the product with
the ability to send viral messages of the type they
received from their influencing peer and those who
received a version of the product without the ability
to send viral messages of the type they received from
their influencing peer. T-tests show that use of the
application by those who received the features they
would have expected to receive and those that were

Table 6 Baseline Hazards Over k Events Ay (k=1...6)
1 2 3 4

Mean (SD) Min Max N

Aot 0.0002 0.0001 0.001 523
(0.0001)

Ao 0.002 0.001 0.013 128
(0.001)

™ 0.015 0.005 0.14 42
(0.024)

Aog 0.034 0.021 0.054 20
(0.010)

Aos 0.046 0.037 0.067 15
(0.008)

Aog 0.099 0.053 0.14 7
(0.044)

Notes. This table reports means, standard deviations, and minimum and
maximum values for baseline hazard lambda parameters of the kth adoption
events in users’ networks, k =1...6.

“disappointed” (so to speak) by not receiving the fea-
tures they would have expected to receive show no
significant differences in application use (t = 0.9054;
SD = 8.0377). It is therefore unlikely that adoption and

Table 7 Correlates of Application Use
1 2 3 4
Application  Application Application Application
use use use use
Beta Beta Beta Beta
(SE) (SE) (SE) (SE)
Viral state = passive  0.129* 0.112 0.062 —0.037
(0.074) (0.079) (0.076) (0.074)
Viral state = active 0.190*** 0.171* 0.091 —0.006
(0.074) (0.079) (0.076) (0.074)
Degree —0.0001 —0.0001 —0.0002**  —0.0002**
(0.0001) (0.0001) (0.0001) (0.0001)
Facebook activity 0.054+** 0.042++* 0.026*
(0.016) (0.015) (0.014)
Notifications 0.022++*
(0.001)
Invites 0.055*
(0.024)
Number of adopters 0.607** 0.360**
(0.030) (0.031)
F value 3.5 4,87+ 83.54=  128.92**
(df) @) (4) () (@)
R? 0.002 0.003 0.07 0.14
Observations 6,310 5,766 5,766 5,766

Notes. This table reports ordinary least squares parameter estimates for a lin-
ear estimating equation regressing application use (defined in Table 3) on the
variables listed, including Facebook activity (the normalized sum of integer
counts of the number of wall posts, activities, affiliations, groups, interests,
pages, notes, favorite books, movies, music, and TV shows, calculated at the
beginning of the study). For all other variable definitions, see Tables 3 and 4.
Models are estimated with robust standard errors clustered around users’
local network neighborhoods.
*p <0.10; **p < 0.05; **p < 0.001.
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use are explained by expected utility from the exis-
tence of viral features.

Fourth, other omitted variables (such as unob-
served user heterogeneity) could create a spurious
correlation between peer adoption and use. How-
ever, our data also rule out this possibility. Because
feature inclusion is randomized, the distribution of
any unobserved covariates must be the same across
treatment groups, and so omitted variables cannot
produce the discrepancy in peer adoption and appli-
cation use across treatment groups shown in Figure 2,
(a) and (c). There could be an unobserved covariate
that must first be activated by the existence of a fea-
ture to drive peer adoption and application use; how-
ever, that too is unsupported by the evidence. Because
we observe correlation between adoption and use
beyond that which is explained by use of the invite
and notifications features themselves (see Table 7), it
seems unlikely that a user characteristic that simulta-
neously drives peer adoption and use would be acti-
vated by a viral feature that users do not use.

The only remaining explanations are depicted in
Figure 3, (g) and (h), which captures both demand
effects (features drive use) and network externalities
(peer adoption drives use). Given our analyses, net-
work externalities are at least in part responsible for
driving application use. But, this is a conservative
interpretation of the evidence. Because we have ruled
out most of the plausible demand effect explanations
(that features drive use in one of several ways we
have considered), it is likely that network effects are
entirely responsible for the increased application use
we observe among treated users.

Another piece of evidence corroborating network
effects is that the hazard rate of adoption is increasing
over adoption events, implying a reinforcement effect
of prior adoptions on the likelihood of future adop-
tion (Van den Bulte and Stremersch 2004). The hazard
rate of adoption increases faster than exponentially
for the first several adoption events, then more slowly,
suggesting that reinforcement is approximately con-
stant over peer adoptions (see Table 6 and Figure 4).
Although we interpret this piece of evidence with
caution because “one cannot distinguish between con-
tagion and heterogeneity only on the basis of statis-
tical properties of the distributional form” (Taibleson
1974, p. 878), the fact that the hazard rate of adoption
is increasing with each subsequent adoption event k
is consistent with a reinforcement effect of prior adop-
tions on future adoption.

Finally, Table 8 presents correlates of application
diffusion that corroborate results of the randomized
trial. Models 4-6 confirm that peers of initial adopters
also use the application because diffusion depth
depends on peers’ (and peers of peers) application

Figure 4 Baseline Hazards (A,,) for k =1...6 Fitted to an Exponential

and a Power Function

0.10 .

0.09 [
y=0.0002x>49% ¢ J
0.08 R2=0.9875 ;/

0.07
0.06
0.05
0.04

0.03

2
y = 0.0002¢ 1785

0.02
R? = 0.8956

0.01

use. Active-personalized and passive-broadcast treat-
ments significantly increase average diffusion depth,
and these effects are again explained by applica-
tion use and the viral features themselves (Model 6).
Results in Model 3 also corroborate hazard model
estimates, confirming that invitations are on average
three times more effective per message in inspiring
peer adoption than notifications. Taken together, evi-
dence of a strong correlation between the number of
adopter friends and application use and the distribu-
tional properties of the baseline hazards of adoption
events suggest that network externalities accelerate
contagion. As more of a user’s friends adopt, they
use the application more, creating a positive feedback
loop.

6. Discussion

These results have broad implications for managers
attempting to promote viral product diffusion and for
theories of social contagion, opinion leadership, and
viral product design. We discuss several of the broad
implications of our findings for managers and future
research on peer influence, social contagion, and viral
marketing.

First, our estimates imply that viral product design
may be more effective in encouraging new product
adoption than traditional marketing strategies. Noti-
fications and invites, which produced 1% and 10%
conversion rates (CRs), respectively, vastly outper-
form the ad campaign used in our recruitment phase
on Facebook, which produced a 0.01% conversion
rate. Because Facebook currently has the largest mar-
ket share of display advertising on the Web, these
comparisons reflect the relative performance of viral
product design and the lion’s share of Web-based
display advertising (Tucker 2010). Notifications and
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Table 8 Correlates of Application Diffusion
1 2 3 4 5 6
Number of Number of Number of Diffusion Diffusion Diffusion
adopters adopters adopters depth depth depth
Beta (SE) Beta (SE) Beta (SE) Beta (SE) Beta (SE) Beta (SE)
Viral state = passive 0.078" 0.084** 0.020 0.045" 0.048 0.020
(0.031) (0.033) (0.059) (0.0178) (0.019) (0.018)
Viral state = active 0.119= 0.131% 0.059¢ 0.057+ 0.063* 0.033*
(0.031) (0.032) (0.030) (0.018) (0.019) (0.018)
Degree 0.0001** 0.0001* 0.0001* 0.0001** 0.00004* 0.00003+
(0.00002) (0.00003) (0.00002) (0.00001) (0.00002) (0.00001)
Facebook activity 0.019 0.006 0.013 0.007**
(0.006) (0.006) (0.004) (0.004)
Application use 0.061* 0.021+*
(0.005) (0.003)
Notifications 0.010** 0.005**
(0.0004) (0.0002)
Invites 0.035** —0.003
(0.010) (0.006)
F Value 12.20 11,18 157.94+ 9.36* 10,11 85.13*
(df) (3) (4) (7) (3) (4) (7)
R? 0.006 0.007 0.16 0.004 0.007 0.09
Observations 8,910 5,766 5,766 6,310 5,766 5,766

Notes. This table reports ordinary least squares parameter estimates for linear estimating equations regressing the number of adopters (defined in Table 3)
and diffusion depth (the maximum network distance from a treated user to any peer adopter in a linked chain of adoptions) on the variables listed. See Table 7
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for all additional notes and variable definitions.

invites also outperform the CR in paid search adver-
tising, which has been estimated at 0.02% (Ghose
and Yang 2009). Although conversion rates are typ-
ically significantly smaller than click-through rates
(CTRs), the CRs for notifications and invites even
outperform published statistics on CTRs for tradi-
tional banner advertising (outside of Facebook) and
e-mail marketing campaigns. The 1% CR on notifi-
cations outperforms the CTRs for traditional banner
advertising (which range from 0.10%-0.20% in pub-
licly available statistics), and invitations are 10 times
as effective at generating conversions as traditional
banner ads are at generating click-throughs. Com-
pared to e-mail campaign CTRs (which range from 2%
to 6% in publicly available statistics), invitations are
again more effective at a 10% conversion rate.” These
comparisons show viral channels to be more effective
at generating higher response rates than traditional
digital advertising channels.

We also asked the directors of the firm with
whom we partnered about their feature implementa-
tion and customer acquisition costs and learned that
invites can be implemented for a total cost under

® Click-through rates on banner ads have declined from 0.33% to
0.19% from 2004 through 2008 (Riley 2009); DoubleClick (2009)
reports that in 2008, the average CTR in the United States was
0.10% for banner ads. For e-mail campaigns, the estimated CTR
in 2008 and 2009 remained stable at 5.9% (Epsilon 2009), whereas
MailerMailer (2010) reports the average CTR on e-mail campaigns
at 2.80%, and WebMarketCentral (2007) reports a 2%—-3% CTR.

$600. Because implementing viral features incurs a
low one-time fixed cost, and the expected return
is proportional to the increase in adopters the fea-
ture generates, viral product design may be a more
cost-effective strategy than increasing spending on
traditional digital advertising (which incurs costs pro-
portional to impressions or clicks). It may be, how-
ever, that the success of viral product design efforts
depends on traditional advertising to the extent that
an initial base of users is needed to implement viral
marketing. It is also important to consider the social
cost of viral messages. Bombarding users with mes-
sages from peers may reduce the overall quality of
the user experience. Future work should estimate the
costs of viral product design more comprehensively
and consider the implications of both marginal rev-
enue and marginal cost on optimal product design.
Second, given that active-personalized features are
more marginally effective but less globally effective
than passive-broadcast features, a natural question
is how managers can optimize the effectiveness of
these viral features. Because the main limitation of
active-personalized features is that high effort costs
curtail their use, one solution may be to couple active-
personalized features with referral incentives that
encourage their use (Biyalogorsky et al. 2001). Opti-
mally designed incentive strategies could encourage
users to generate more personalized referrals and to
target and personalize viral messages more effectively
(Aral et al. 2011). It may also be possible to improve
the low marginal effectiveness of passive-broadcast
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features by automatically targeting and personaliz-
ing broadcast messages algorithmically. If there is a
social cost to viral messages, product and platform
developers could seek to limit impersonal messages
in adaptive ways that are tied to the effectiveness of
the messages themselves.

Third, the combination of viral features and net-
work externalities seems to drive a positive feed-
back loop in which product use drives peer adoption,
and peer adoption in turn drives product use. If so,
managers should seek to enable this feedback loop
by designing both viral features and strong direct
and indirect network externalities into their products.
Maximizing engagement and minimizing churn may
be obvious goals, but the combined effects of engage-
ment and contagion on product diffusion are less
obvious. Interactions between network externalities,
sustained use, and customer churn may change over
a product’s life cycle and may vary across products.
More work on the relationships between social conta-
gion, sustained use, and customer churn over prod-
ucts and product life cycles will help clarify when
viral marketing is most effective.

7. Conclusion
We conducted a large-scale randomized experiment
testing the effectiveness of viral product design fea-
tures in creating social contagion. We found that
viral product design has econometrically identifiable
impacts on peer influence and social contagion in
new product diffusion. Results of our randomized
trial suggest that designing viral features into prod-
ucts can increase social contagion by up to 400%. Sur-
prisingly, designing products with passive-broadcast
viral messaging capabilities generates more total peer
influence and social contagion than adding active-
personalized viral messaging capabilities. Although
active-personalized messaging is more effective in
encouraging adoption per message and is correlated
with more user engagement and sustained product
use, it is used less often, and therefore generates less
total peer adoption in the network. Data on the distri-
butional form of the diffusion process and on product
use are consistent with the existence of positive net-
work externalities that reinforce peer adoption and
create a virtuous cycle of engagement and contagion.
Understanding optimal viral product design strate-
gies, taking into account factors such as sustained
product use, network externalities, social and eco-
nomic costs, incentives, and the marginal effective-
ness of different viral features could enable firms to
optimally create and manage social contagion. The
difficulty, however, is in determining what works
and what does not. Numerous statistical challenges
prevent clean causal estimation of the relationships

between interventions and outcomes and the likely
effects of changes in product design and platform
policy. Fortunately, IT-based products and platforms
provide natural vehicles for randomized experimen-
tation. Given the low cost of conducting experiments,
the rapid development and testing of viral design
features, and the winner-take-all nature of markets
with network externalities, this type of experimenta-
tion is likely to increase in the future and eventually
to become commonplace in the development of many
products and platforms. Our work sheds light on how
viral products can be designed to generate social con-
tagion and offers a template for using randomized
trials to identify peer influence in networks.
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Appendix

Inside-Out Design

Randomized trials are traditionally used to estimate the
effect of a treatment on the treated. To study the effect
of viral feature incorporation on product adoption out-
comes, we instead examined the effect of treatment on the
peers of treated application users. The difference in these
approaches is illustrated in Figure A.1. Arrows indicate the
potential flow of influence that the experiment is designed
to detect. The solid blue circle in the center represents the
treated user, and the red outlines indicate measurements of
treatment effects. In social network environments, a conven-
tional approach is infeasible because it is difficult to com-
prehensively control the network environments of each user
in the study population. It is feasible, however, to treat a
user and observe the effect of treatment on the outcomes of
their peers.

The strength of our approach lies in its ability to capture
effects of any form of influence-mediating communication
channels between the treated user and her peers, including
effects that arise through influence-mediating communica-
tion channels beyond those that can be explicitly recorded.
For example, treated users could communicate with and
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Figure A.1 Inside-Out Experimental Design

Conventional approach Our approach

influence their peers through offline interactions such as
face-to-face communications or telephone conversations, as
well as through unrecorded online communications such as
e-mail or external chat conversations. Because we measure
the response of peers regardless of how they may or may
not have been influenced by treated users, we are able to
capture the effect of unrecorded influence-mediating com-
munications on peer adoption.

Preventing Selection Effects

Selection effects could occur when a user chooses to
adopt the experimental application through the recruitment
campaign or when they adopt in response to a viral mes-
sage. We took steps to mitigate and measure both possi-
bilities. The recruitment campaign was designed to reach a
representative audience of Facebook users, and advertise-
ments were displayed to users through advertising space
within Facebook and within existing Facebook applica-
tions. Establishing to what extent the recruited popula-
tion is representative of the general Facebook population
is somewhat challenging because Facebook does not offi-
cially publish demographic statistics of their user base.
However, through the use of a recently released social
targeting advertisement service provided by Facebook, it is
possible to obtain some official demographic statistics. Age
and gender demographics sampled through this application
programming interface and published online by istrategy-
labs.com are comparable to the same demographic ranges
for recruited study population users in Figure A.2. Though
our sample has a slightly higher percentage of women than
the Facebook population, and users in our sample have a
slightly higher average degree (150 compared with 130 in
Facebook statistics), the demographics of our study pop-
ulation are comparable to those of the broader Facebook

Figure A.2
100

population, and the published Facebook demographics fall
within one standard deviation of study population sample
means.

In addition to issues of selection surrounding the popula-
tion of recruited users, application users that adopt because
of peer influence may be subject to selection effects and
may be fundamentally different from application users that
adopted via initial recruitment. It could be that users who
use the viral features and peers of users who use viral fea-
tures are systematically different from randomly selected
Facebook users. We avoid these sources of selection bias in
our analyses by only considering initially recruited users
in the randomized treatment group to which they were
assigned. Peers of recruited users only contribute to local
network peer adoption of originally recruited users and are
not themselves used as test subjects.

Preventing Leakage and Contamination

In randomized trials in network environments, users
assigned to different treatment groups may not be strictly
isolated from one another. This raises the concern that infor-
mation leakage through indirect network pathways may
contaminate the results of the study. It is important to note
that in traditional studies, whether or not the network is
measured, relationships may still exist between treatment
and control populations that create leakage effects. One ben-
efit of our design is that we systematically observe how
individuals in the study are connected, enabling us to mea-
sure and prevent leakage.

Several factors reduce the likelihood that leakage is affect-
ing our results. First, because treatment assignment is ran-
domized, any leakage will be uncorrelated with treatment
assignment and cannot account for the observed differences
in responses to treatments. Although it is possible that leak-
age will on average provide some common information to
peers of treated users uniformly across the treatment desig-
nations, this effect should only serve to make our estimates
across treatment groups more conservative, because leakage
should reduce differences between control and treatment
groups. Second, information flows between individuals in a
network typically decay rapidly with network distance (Wu
et al. 2004, Aral et al. 2007). Although all users may be con-
nected through long friendship paths, leakage will diminish
over successive hops in each path.

Nonetheless, leakage effects could downward bias our
estimates of treatment effects toward zero, and we therefore

Comparison of Sample and Population Demographic Characteristics
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Figure A.3 Preventing Contamination and Leakage
Treatment 1 Treatment 2 Treatment 1 Treatment 2
group group group group
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Figure A.4

Procedure for Designating Contaminated Peers
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A peer with multiple treated
friends in different treatment
groups

A peer with multiple treated
friends in the same treatment
groups

take several steps to prevent leakage. First, in hazard
rate models, we examine only peers of initially recruited
adopters. In addition to avoiding potential selection issues
mentioned above, this also excludes individuals (and their
potential adopter peers) that adopt in chains within a local
neighborhood, lessening leakage effects. Such individuals
are likely to share more and shorter indirect paths with
existing adopters than a randomly chosen peer, as a conse-
quence of clustering and mutuality (Newman 2003).

Second, we account for users with multiple treated peers
(of similar and/or different treatments). Existence of peers
of multiple treated application users leads to two potential
complications. First, users may be peers of multiple treated
users from different treatment groups, making it impossible
to link their treatment effects to a single treatment. Second,
peers of multiple treated users that belong to the same
treatment group are clearly classified as peers of either base-
line, active-personalized, or passive-broadcast users; how-
ever, measurements of their response may be incorrectly
estimated as a consequence of being subject to influence
from multiple treated friends. A peer with multiple treated
friends in a given viral treatment group may exhibit an
adoption outcome or time to adoption that is systematically
different from those of peers with only one treated friend.
These two scenarios are displayed in Figure A.3.

The nature of treatment randomization does not allow
us to simultaneously guarantee that all treated friends of
a peer will receive the same treatment. Consequently we
treat peers with multiple treated friends as contaminated as
soon as they become so and exclude them from our analysis.
This procedure could underestimate the effect of clusters of
adoption on the time to adoption or number of adopters in
a local network neighborhood; however, if this is the case,
it will do so in a manner that is the same for all treatment
types. Furthermore, because treatment groups are random-
ized, there can be no systematic correlation between the
type of treatment received by a user and that received by
her subsequent adopter peer.

The procedure that we adopt for designating a peer
as contaminated is detailed in Figure A.4. The initially
recruited adopter, labeled R, adopts at time t;,. Two peers
of user R, labeled 1 and 2, adopt at subsequent times
and f,, respectively. In panel (a), for times t > t;, peer 2
has multiple treated peers (R and 1) that may have been
assigned different treatments. Peer 2 is therefore consid-
ered contaminated for times ¢ > ¢. In panel (b), a sim-
ilar situation occurs, but no link exists between peers 1

and 2, and consequently neither user is considered con-
taminated. In our analysis, when a peer is designated as
contaminated, she is removed from the hazard rate model
for subsequent time periods. This procedure appropriately
retains the maximal empirical support for hazard rate esti-
mation and parameterizes our ignorance of what might
happen subsequent to a user’s contamination. The right
censoring of contaminated subjects has become standard
practice in randomized clinical trials where a patient in a
randomized treatment group undergoes some characteristic
change that is beyond the researcher’s control. Furthermore,
by including right-censored observations in our data rather
than truncating the data, we avoid problems caused by data
truncation that could lead to spurious evidence of contagion
(Van den Bulte and Iyengar 2011).°

We note that the exclusion of peers with multiple treated
friends does not preclude measurement of network exter-
nalities. Peers of treated users that become adopters but
are not connected are considered uncontaminated and are
included in our analysis. For two peers of a treated user that
are connected and eventually become adopters, the initial
peer adopter is included in our analysis, and only the peer
that subsequently adopts is considered contaminated and
excluded for all times subsequent to contamination. These
procedures enable a tightly controlled randomized trial of
peer influence that addresses the potential for selection and
leakage effects.

Robustness Checks for Different Hazard Model
Specifications

There are a limited number of survival models that apply
to contexts with multiple failures. Among these models,
the variance-corrected stratified proportional hazards model
reported in this paper is the most appropriate specifica-
tion given the structure of our data and the parameters we
estimate. However, we also checked multiple other hazard
model specifications to test the robustness of our results
to changes in model specification and estimation strategy.

® An alternative to dealing with users who have multiple adopter
friends belonging to different treatment groups would be to ascribe
peer adoption outcomes to influence from the adopter friend in
the viral treatment group with the fewest viral features (above the
baseline). However, we do not know a priori that inclusion of a
viral feature does not have a negative impact on peer adoption
outcomes (for example, if peers view viral messages as spam). To
ascribe users with multiple adopter friends as peers of the lowest
viral treatment group could upwardly or downwardly bias esti-
mates of lower viral treatment effectiveness. It is therefore cleaner
to remove contaminated users altogether.
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Table A.1 Robustness Checks for Different Model Specifications
1 2 3 4 5 6 7
Specification VCSPHM AFT EXP AG, AG, PWP WLW
Viral state = passive 2.51 —2.41% 1.07% 2.60% 2.54x 2.51% 2.00*
(0.86) (1.16) (0.35) (0.91) (0.87) (0.865) (0.78)
Viral state = active 3.31" —3.66"* 1.30* 3.57% 3.30" 3.31% 2.62+*
(1.24) (1.22) (0.39) (1.36) (1.26) (1.24) (1.02)
Application activity 1.02+ —0.119% 0.015% 1.02%+ 1.02%+ 1.02+ 1.00
(0.003) (0.039) (0.003) (0.003) (0.003) (0.003) (0.002)
Notifications 1.02++ —0.115 0.025** 1,02+ 1,02+ 1.02+ 101
(0.002) (0.010) (0.002) (0.002) (0.001) (0.002) (0.002)
Invites 1.06** —0.198 0.090** 1.07+ 1.06* 1.06** 1.02
(0.028) (0.259) (0.036) (0.037) (0.035) (0.027) (0.018)
Prior adopters 1.50%
(0.062)
Time dummies No Yes Yes No No No No
Log likelihood —4,542.58 —2,826.32 —4,136.53 —5,254.17 —5,212.88 —4,542.56 —4,561.56
X2 (df) 307.47+ — 1,656.60%* 412.65*** 435.88+* 307.60*** 109.17+
(%) an (5) (6) (®) ()
Observations 3,929 3,929 3,929 3,929 3,929 3,929 3,929

Notes. Standard errors are clusters around users’ local network neighborhoods. VCSPHM, variance-corrected stratified proportional hazards model as specified
and reported in the paper; AFT, accelerated failure time model with log-logistic survival distribution; EXP, exponential regression with log relative-hazard form;
AG, Andersen and Gill (1982) model; PWP, Prentice et al. (1981) proportional hazards model with time-dependent strata; WLW, Wei et al. (1989) marginal risk

set model.
*p <0.10; **p < 0.05; **p < 0.001.

For good reviews of appropriate specifications of survival
models in multiple failure data, we recommend Wei and
Glidden (1997) and Ezell et al. (2003).

Table A.1 reports results of different hazard model spec-
ifications, all of which are similar to our own. We report
the original variance-corrected stratified proportional haz-
ards model specification detailed in this paper in column 1.
Column 2 reports an accelerated failure time model with
a log-logistic survival distribution. Column 3 reports an
exponential regression with log relative-hazard form. Col-
umn 4 reports results from a traditional Andersen and
Gill (1982) model. Column 5 introduces a time-dependent
covariate measuring the number of prior adopters to
the traditional Andersen-Gill specification to capture the
dependence structure among recurrence times, which in our
original model is captured by the adoption event strata k.
Column 6 reports a Prentice et al. (1981) proportional haz-
ards specification with time dependent strata. Finally, col-
umn 7 reports results of a Wei et al. (1989) marginal risk
set model. We note that all specifications produce similar
results. However, we are most confident in our original
specification, which is best suited to our context and data.
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